CALCULATING GRAVITATIONAL POTENTIAL ENERGY

Calculating Gravitational Potential Energy

Gravitational PE = mass × gravity × height

The mass of an object is it's resistance to gravity. Mass is measured in grams (g) or fractions/multiples of a gram (centigrams, kilograms, etc.). For this formula, if the mass is given in a different unit, it must be converted to kilograms.

Gravity refers to acceleration due to gravity. On earth, this is a constant rate of 9.8 meters per second² (m/s^2)

Height refers to how high above sea level an object is positioned. Height is measured in meters (m) or fractions/multiples of a meter (centimeters, decameters, etc.). For this formula, if the height is given in a different unit, it must be converted to meters.

Gravitational Potential Energy = mass × gravity × height

We often shorten the equation to $PE_{grav} = mgh$

Let's assume the lamp has a mass of 9 kg and the shelf is 3 m high. Given these numbers, we can easily find the amount of Gravitational PE the lamp has. PE_{grav}= mgh

Substitute the numbers given for the variables in the formula.

m= 9 kg

g= 9.8 m/s² (Remember, gravity on Earth is a constant!)

 $\therefore PE_{grav} = (9)(9.8)(3)$

m

* g

*

h

h= 3 m

 $PE_{grav} = mgh$

Now Multiply!

$$PE_{grav} = (9)(9.8)(3)$$

∴ PE_{grav}= 264.6 J

Remember to use the correct units!

 $PE_{grav} = mgh$

The lamp has 264.6 J of Gravitational Potential Energy.

You did it!

Things to Remember:

- Mass must be in KILOGRAMS
- Gravity on Earth has a constant rate of acceleration (9.8 m/s² ----It never changes!)
- Height must be in METERS