CALCULATING GRAVITATIONAL POTENTIAL ENERGY

Calculating Gravitational Potential Energy

Gravitational PE $=$ mass \times gravity \times height

The mass of an object is it's resistance to gravity. Mass is measured in grams (g) or fractions/multiples of a gram (centigrams, kilograms, etc.). For this formula, if the mass is given in a different unit, it must be converted to kilograms.

Gravity refers to acceleration due to gravity. On earth, this is a constant rate of 9.8 meters per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

Height refers to how high above sea level an object is positioned. Height is measured in meters (m) or fractions/multiples of a meter (centimeters, decameters, etc.). For this formula, if the height is given in a different unit, it must be converted to meters.

Gravitational Potential Energy $=$ mass \times gravity \times height

We often shorten the equation to $P E_{\text {grav }}=m g h$

Let's assume the lamp has a mass of 9 kg and the shelf is 3 m high. Given these numbers, we can easily find the amount of Gravitational PE the lamp has.

$$
P E_{\text {grav }}=m g h
$$

Substitute the numbers given for the variables in the formula.
$\mathrm{m}=9 \mathrm{~kg}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (Remember, gravity on Earth is a constant!)

$$
\mathrm{h}=3 \mathrm{~m}
$$

$$
\therefore P E_{\text {grav }}=(9)(9.8)(3)
$$

$$
P E_{\text {grav }}=m g h
$$

Now Multiply!

$$
P E_{\text {grav }}=(9)(9.8)(3)
$$

$\therefore \mathrm{PE}_{\text {grav }}=264.6 \mathrm{~J}$

Remember to use the correct units!

$$
P E_{\text {grav }}=m g h
$$

The lamp has 264.6 J of Gravitational Potential Energy.

You did it!

$P E_{\text {grav }}=m g h$

Things to Remember:

- Mass must be in KILOGRAMS
- Gravity on Earth has a constant rate of acceleration ($9.8 \mathrm{~m} / \mathrm{s}^{2}$--It never changes!)
- Height must be in METERS

